
Things at DAE that prevent going full-Linux.

Respondus Lockdown Browser
Adobe Photoshop
MSVC Compiler Quirks

Linux Blockers

This US-based program is required to take certain exams, notably:

Semester 1:

Algorithms
Visual Language
Graphics Fundamentals

Semester 2:

Game Tech

Semester 3:

Programming 3
Graphics Programming (only the quiz)

Respondus has taken (some) measures to prevent Linux users from accessing it. The software
attempts to detect when being run via WINE or a virtual machine.

Although its security is easily defeated, and Respondus itself encourages you to try it, please do
not try to run it on Linux or a VM during an exam! The browser will falsely flag you as a cheater!

And it goes without saying, we do not support any kind of cheating exams. Remember, we are here
to learn: you'd not only be cheating the exam, but yourself.

Respondus Lockdown
Browser

Yes, you have our blessing…go ahead and see if you can break it

-Respondus (source)

Solutions

https://web.archive.org/web/20230608212957/https://web.respondus.com/five-little-known-reasons-to-use-respondus-lockdown-browser/

You can request a paper copy of the exam ahead of time, but it is likely you will be asked to use a
Windows laptop.

A university in Italy lost a lawsuit from its students over it using Lockdown Browser. The case cites
concerns over the large amount of unnecessary data collection done by Respondus, and the
unlawful (under GDPR) transfer of personal student data to the US. Note however that DAE does
not employ the camera feature of the browser, so not all the points apply.

See this page from the Linux and Unix Users Group at Virginia Tech Wiki for more details on the
browser: Lockdown Browser.

Further reading

https://web.archive.org/web/20230207191552/https://www.dataguidance.com/news/italy-garante-fines-luigi-bocconi-university-%E2%82%AC200000
https://vtluug.org/wiki/Respondus_LockDown_Browser

2D for Games is the only course with a hard requirement on Adobe Photoshop. This is because .psd
files are required for submission.

You can use the excellent (but non-FOSS) web app Photopea as a nearly full-featured replacement
for Photoshop.

The regular distribution of Adobe Photoshop works fine on virtual machines (preferably with GPU
passthrough, to enable all features). You can use a local VM (libvirt/QEMU works great), or even a
cloud "virtual desktop" provider, to run Photoshop and activate it via your student email. If using a
local VM, you can even run software like WinApps or Cassowary to seamlessly-ish integrate it into
your desktop (NOTE: both are unmaintained, but still work).

Ask the teachers to use a FOSS alternatives such as Krita or GIMP! As of 2023, the final assignment
only requires vector art, so Inkscape may be a good option as well.

Although it is possible to run recent-ish Photoshop versions on WINE quite well, Adobe's DRM
(Digital Restrictions Management) system does not work. You can try alternative installation
methods found on GitHub, but this is not recommended. If you choose to try this, please be aware
that the account sign-in does not work so you should use a trial version.

Adobe Photoshop

Solutions
Photopea

Virtual machine

Alternatives

WINE (not recommended)

https://photopea.com
https://github.com/Fmstrat/winapps
https://github.com/casualsnek/cassowary
https://krita.org
https://www.gimp.org/
https://inkscape.org/

Visual Studio by default uses Microsoft's proprietary compiler MSVC, which often does not compile
programs that work fine on Linux compilers such as g++ or clang++ . Therefore, assignments that
require submitting source code should either find a way to make Visual Studio use an open-source
compiler that can be tested on Linux without any change from teachers (if you do, please edit this
page!), or make sure you test your code on MSVC!

Calls to functions whose names get clobbered by #define s in windows.h will likely break.
Sometimes globally defining WIN32_LEAN_AND_MEAN and NOMINMAX helps, otherwise you will have
to manually do this for all macros that affect your code:

MSVC allows backslashes in #include paths, which is nonstandard. You can pass -fms-extensions to
clang to bypass this, but ideally #include s should be corrected.

MSVC also does not check the casing of filenames, as this is not relevant on Windows. When
building on Linux however, this is very important. Make sure the path in the #include directive
matches exactly that of the file, down to the casing!

MSVC Compiler Quirks

Common causes
windows.h defines

#ifdef min
#undef min
#endif

#ifdef max
#undef max
#endif

// and so on...

#include extensions

Some standard library headers may include other headers, such as string including vector
implicitly. This is not defined by the standard (in fact, it is permitted!), so may break your code
when switching compilers if you unknowingly depend on them.

The tool include-what-you-use can be used to solve this problem.

If using Clang, you can also reduce the number of these transitive includes by defining
_LIBCPP_REMOVE_TRANSITIVE_INCLUDES (see the docs for more info).

Don't use extensions to the C++ standard, as these may not be available on MSVC. On modern
CMake versions, you can set the target property CXX_EXTENSIONS to OFF .

MSVC is often behind other compilers in implementing newer C++ features, so stick to older
standard versions if you can. In older versions, MSVC usually has about the same support as GCC,
and more than Clang, so you should be fine. You can see the current status on cppreference.

There are packages in the AUR that do this. It would be good to explore using them, and update
this page!

Install Visual Studio on a VM, and make sure the project builds and runs.

Transitive includes

C++ Standard extensions

C++ features

Solutions
MSVC on WINE

Virtual machine

Friends

https://include-what-you-use.org/
https://libcxx.llvm.org/DesignDocs/HeaderRemovalPolicy.html
https://en.cppreference.com/w/cpp/compiler_support

Ask a friend to check if it builds on their Windows machine!

It is possible to use CI/CD systems to check that a project builds. If it's not a graphical app, you can
even test running it in the VM! An example setup for building .sln projects on push with GitHub
Actions can be found here.

Do note that, while GitHub offers 2,000 minutes for free, using a Windows VM counts as double
minutes! You only have 1,000 real minutes per month, which should still be largely enough.

CI/CD

https://git.allpurposem.at/mat/Prog3-Exams/src/branch/main/.github/workflows/action-build-EXAM.yml

