
Visual Studio by default uses Microsoft's proprietary compiler MSVC, which often does not compile
programs that work fine on Linux compilers such as g++ or clang++ . Therefore, assignments that
require submitting source code should either find a way to make Visual Studio use an open-source
compiler that can be tested on Linux without any change from teachers (if you do, please edit this
page!), or make sure you test your code on MSVC!

Calls to functions whose names get clobbered by #define s in windows.h will likely break.
Sometimes globally defining WIN32_LEAN_AND_MEAN and NOMINMAX helps, otherwise you will have
to manually do this for all macros that affect your code:

MSVC allows backslashes in #include paths, which is nonstandard. You can pass -fms-extensions to
clang to bypass this, but ideally #include s should be corrected.

MSVC also does not check the casing of filenames, as this is not relevant on Windows. When
building on Linux however, this is very important. Make sure the path in the #include directive
matches exactly that of the file, down to the casing!

MSVC Compiler Quirks

Common causes
windows.h defines

#ifdef min
#undef min
#endif

#ifdef max
#undef max
#endif

// and so on...

#include extensions

Some standard library headers may include other headers, such as string including vector
implicitly. This is not defined by the standard (in fact, it is permitted!), so may break your code
when switching compilers if you unknowingly depend on them.

The tool include-what-you-use can be used to solve this problem.

If using Clang, you can also reduce the number of these transitive includes by defining
_LIBCPP_REMOVE_TRANSITIVE_INCLUDES (see the docs for more info).

Don't use extensions to the C++ standard, as these may not be available on MSVC. On modern
CMake versions, you can set the target property CXX_EXTENSIONS to OFF .

MSVC is often behind other compilers in implementing newer C++ features, so stick to older
standard versions if you can. In older versions, MSVC usually has about the same support as GCC,
and more than Clang, so you should be fine. You can see the current status on cppreference.

There are packages in the AUR that do this. It would be good to explore using them, and update
this page!

Install Visual Studio on a VM, and make sure the project builds and runs.

Transitive includes

C++ Standard extensions

C++ features

Solutions
MSVC on WINE

Virtual machine

Friends

https://include-what-you-use.org/
https://libcxx.llvm.org/DesignDocs/HeaderRemovalPolicy.html
https://en.cppreference.com/w/cpp/compiler_support

Ask a friend to check if it builds on their Windows machine!

It is possible to use CI/CD systems to check that a project builds. If it's not a graphical app, you can
even test running it in the VM! An example setup for building .sln projects on push with GitHub
Actions can be found here.

Do note that, while GitHub offers 2,000 minutes for free, using a Windows VM counts as double
minutes! You only have 1,000 real minutes per month, which should still be largely enough.

CI/CD

Revision #4
Created 4 February 2024 23:57:47 by Mat
Updated 20 February 2024 16:06:46 by Mat

https://git.allpurposem.at/mat/Prog3-Exams/src/branch/main/.github/workflows/action-build-EXAM.yml

