Software

This book goes over the different engines and tools needed for each programming course, and how
to use them on Linux.

Kevgine (Win32)

Solution-Runner

Linux IDEs
SideFX Houdini




Kevgine (Win32)

This is the Win32 engine created by Kevin, with a strong emphasis on its Win32 backend. There are
multiple ways to use this engine.

There is a student-maintained version of this framework that has a switchable backend, meaning
you can seamlessly switch between Win32 and SDL2. Using the SDL2 backend, the engine can run
natively on Linux (and Windows, of course). You can also always switch it to the WIN32 backend to
get perfect compatibility, and test it via WINE.

The project is available in the Solution-Runner Templates directory.

NOTE: The SDL2 backend is provided as best-effort and will not perfectly match
the behavior of the Win32 version. Most parts of the engine are faithfully
recreated, including the Win32 quirks that come with it, but it is not perfect. For
example, sound is not implemented with the SDL2 backend. Please make sure
to always test a Win32 build with WINE (via Solution-Runner) before
hand-in!

WINE

Using LLVM, you can cross-compile the engine as provided to a Windows .exe file, and run it inside
of WINE. You should always do this at least once before hand-in! The teachers will grade
your code based on how it runs for them on Windows!

There are two ways to run your code on WINE:

Solution-Runner (recommended)

Kevgine is fully supported by the Solution-Runner project. With it, you can compile and run the
program via WINE using the Win32 backend.

Manually cross-compile (not
recommended)


https://git.allpurposem.at/mat/Solution-Runner/src/branch/main/Templates/Kevgine
https://dae-linux.allpurposem.at/link/7

See this in-depth blog post explaining the process for Kevin's engine: Cross Compiling a Windows

Game Engine

Natively

To use the SDL2 backend, simply open the Kevgine template from the Solution-Runner repository
in a CMake-enabled IDE.

NOTE: KDevelop is the recommended IDE for C++ on Linux. It has great CMake
support and is tested with these projects. Simply open the folder, and press
Execute to run it. The first time, you will have to add a Launch Configuration.
Simply select game from the Add dropdown. (TODO: make this a page)

Please make sure you have CMake, fontconfig, and base development tools installed. On Arch
Linux, you can use this command:

sudo pacman -S base-devel cmake fontconfig

The game should run natively on Linux, and you can use any usual development tools like gdb as
usual.


https://blog.allpurposem.at/adventures-cross-compiling-a-windows-game-engine
https://blog.allpurposem.at/adventures-cross-compiling-a-windows-game-engine

Hello world!


https://dae-linux.allpurposem.at/uploads/images/gallery/2024-02/image-1707085038215.png

Solution-Runner

Solution-Runner is an open source project that allows running projects as Visual Studio "solutions" (
.sln and .vexproj formats) on Linux, via cross-compilation.

It has been tested with basic Win32 projects, the SDL-enabled Kevgine version (using its
unchanged Win32 backend), and console projects.

Source code.

Dependencies:

For Arch Linux, you can use this command to get the necessary packages:

sudo pacman -S python clang wine mingw-w64-crt mingw-w64-binutils mingw-w64-gcc mingw-w64-headers

mingw-w64-winpthreads

Compile and run:

1. Clone the Solution-Runner project to your computer.

2. Navigate to your solution directory, and run the run.py script. It will parse the Visual
Studio (.sIn and .vcxproj) project and attempt to compile it.
3. If it succeeds, it will proceed to run the .exe file via WINE.

NOTE: you can ignore the usual WINE output, as well as these lines:

Warning: corrupt .drectve at end of def file



https://dae-linux.allpurposem.at/link/1#bkmrk-natively
https://git.allpurposem.at/mat/Solution-Runner
https://git.allpurposem.at/mat/Solution-Runner

You may set up a shell alias like runsin that points to the absolute path of the
script, as a hackish way to "install" it globally. This way, you can call it from
anywhere.

Usage with IDEs

This is not a replacement for a proper CMake project with Linux support! However, you can get a
functional IDE experience if using clangd as a language server. Solution-Runner will generate a
compile-flags.txt file, which clangd should pick up. This file allows it to provide errors and diagnostics
as if you were on Windows. Magic!



Linux IDEs

Documenting IDEs that work well with DAE Linux engines and tools.

KDevelop

KDevelop is an awesome free and open source IDE for Linux (and Windows + macOS) made in Qt

by the KDE team. It provides an experience closest to Visual Studio. Once installed, you can follow
these instructions to set it up with any DAE Linux engine:

1. Use the Project -> Import Project button, and select the directory containing CMakeLists.txt :

Open Project

) Recent 4 {3y apm School GraphicsProgl_DirectX (]

o Home Neame 7@ Modified =

) Documents B build 24 som
:
(+) Downloads

Music

Pictures

Cloudthos

School

|
|
|
|
Videos I source
|
¥
[ |
-

5 Dec 2023
Other Locations

All Files =



https://kdevelop.org/
https://dae-linux.allpurposem.at/uploads/images/gallery/2024-02/image-1707151937506.png

2. Hit finish with the default CMake Project Manager selected:

7

Project Information

L CMakelists.txt (CMake Project Manager)

Finish Cancel

3. Accept the default settings, ensuring it will use an empty build directory. Make sure this
directory is in your .gitignore !

Creating a new build directory.

a [

Cancel

4. Wait for CMake to run. You can see this in the panel at the bottom. After some time, it
should finish successfully:
The Build window showing successful CMake output. It ends with *** Finished *** and no errors



https://dae-linux.allpurposem.at/uploads/images/gallery/2024-02/image-1707152031721.png
https://dae-linux.allpurposem.at/uploads/images/gallery/2024-02/image-1707152125990.png
https://upload.allpurposem.at/AeAziY19U4Oo/direct

NOTE: Some projects may produce CMake warnings, namely older ones using
SDL. These can be safely ignored, as long as the configure itself finishes.

5. Now you can hit Execute at the top (or shift+F9 ). The first time, you will be asked to select
a launch configuration. Simply click Add , then select your target (at the end of the list).
For most DAE Linux frameworks, this will be called game . You can leave the settings as
default: The Launch Configurations list, showing a target called game after being added


https://upload.allpurposem.at/QI1kKAF0hfca/direct

SideFX Houdini

Houdini is a nonfree proprietary program developed by SideFX. It allows defining procedural assets
via various nodes, in a workflow akin to Blender's geometry nodes.

It is used in DAE's 3D for Games course (fourth semester).

Despite being proprietary, Houdini works very well on Linux, likely thanks to it packaging a semi-
recent version of Qt. It does not, however, run natively on Wayland.

Setup

TODO!!


https://www.sidefx.com/products/houdini/

